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Abstract. Two recent articles [(2000) J Am Chem Soc
122: 2010, (2001) J Am Chem Soc 123: 2007] have
explored electron-density-based and external-potential-
based chemical reactivity indices. In this article, methods
are presented for computing these indices from the output
of a Kohn—Sham density functional theory calculation.
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1 Introduction

The abundance of chemical knowledge underscores the
need for incisive and inclusive tools for systematizing
chemical data. In recent years, much attention has been
paid to the insights density functional theory (DFT) [1,
2] can give into chemical reactivity.

In two recent articles [3, 4], DFT was used to provide
a “‘perturbative perspective” on chemical reactivity. In
the first article [3], problems associated with charge
transfer were explored using functional Taylor series in
the electron density and DFT’s fundamental variational
principles [5], establishing a novel perspective to quan-
tities of established chemical significance, notably the
Fukui function [6, 7], local softness [8, 9], chemical
hardness [10-12], and softness. In the second article [4],
problems associated with changes in the positions of the
atomic nuclei were explored using functional Taylor
series in the external potential. In analogy to the “elec-
tron-density-based” indices of the first article, the second
article proposes several “‘external-potential-based” indi-
ces, most notably an approximate potential-energy sur-
face, the stability, the lability, and the proton hardness.
The present article enhances the practical utility of these
indices by presenting strategies for evaluating them using
the output of Kohn—-Sham DFT calculations [13].
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2 External-potential-based indices
2.1 Canonical ensemble

Suppose that we have performed a Kohn—Sham DFT
calculation for an N-electron system with external
potential, Vo i(r). As this system undergoes a chemical
reaction, the external potential changes owing to the
rearrangement of the atomic nuclei and/or the approach
of a reactant molecule. The key external-potential-based
reactivity index, Yn[N,vo(r)], approximates how the
energy changes when the external potential changes
from vy (r) to vy(r). For an M-atom molecule, relevant
changes in the external potential can always be param-
eterized by a set of no more than 3M coordinates;
however, as demonstrated in Ref. [4], a small subset,
X, of these parameters usually suffices for qualitative
descriptions of chemical reactivity.

Expressing vo™(r) and vo(r) as functions of X yields,
as an approximate expression for the change in energy
due to a small change about the reference nuclear
configuration, X,

Yn(X) = AViep (X, Xrer) + / Prer(7) [0 (X5 1) — v (Xrer; 1) |dr

45 [ [nir) = oo (RN P e (Ko
— 0 (Xref; 1)]drdr’. (1)

In Eq. (1), AV,p(X,X,ef) represents the change in the
nuclear—nuclear repulsion energy when the nuclear
configuration is changed from X,.r to X, vo(X;r) denotes
the external potential associated with the nuclear con-
figuration parameterized by X, p.(r) is the electron
density for the reference nuclear configuration, and

Oprer(r)
PI'C ’ ! = = 2
)= () 2)
is the polarizability kernel at X,.;. Because
YN(X) ~ U(X) - U(Xref)a (3)
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where U(X) is the total energy (electronic energy plus
nuclear—nuclear repulsion energy) associated with the
molecular configuration X, Yn(X) is small at sites on the
potential-energy surface where the molecule is especially
stable and is large for high-energy conformations of the
molecule. Of particular interest are the properties of the
system near the global minimum, X,,;,, of Yn(X). Key
properties associated with the global minimum are the
stability,

Ey = *YN(Xmin)a (4>
and the lability,
dim(X
Ay = dimX) (5)
tr{(D,]}

where dim(X) denotes the dimension of the vector X,
and tr{®;;} is the trace of the Hessian matrix at global
minimum:

*Yy(X)

aX,an X:Xmm

= [VVYy(X)xox,y,- (6)

Given Y(X), both the stability, Zy;, and the lability, Ay,
are readily determined.

Using Eq. (1), Yn(X) may be readily determined from
the electron density, p.dr), and polarizability kernel,
P.(r,r), of the reference state. The electron density is
readily determined from the output of many different
computational procedures, including a Kohn-Sham
DFT calculation on the reference system [13]:

o0
Prer(r) = Y milsi(r)[, (7)
i=1
where {y,(r)}2, and {n;}~; — ; are the Kohn-Sham
orbitals and orbital occupation numbers for a system
with N electrons and external potential v,
(r)=vo(X;e;r). However, the polarizability kernel,

A [ )Y

ref

{ ([ [ o) o, o) dsadrdas iy }
xy)dspdx; ... de]

Sham model N, noninteracting electrons interact with
an effective external potential [13]

vs(r) = vp (1) + o (r) + o (). ©)
Here both the classical electrostatic potential,

oy — [ Prei(r)
() = /ﬁdr’, (10)

and the exchange correlation potential, v "'(r), are

functionals of p,eq(r), while vo™(r), which was held fixed
during the Kohn-Sham calculation, is the external
potential for which p.(r) is the ground-state density.
Hence v,™'(r) may also be considered to be a functional
of pred(r) [5].

The functional derivative of vk_g
the density,

51)1(—5@)}
op(r')

rf(r) with respect to

_ 500(f)}

L0y (r)]
P=Pref 5p (l'/) p

| Ovxe (r)]
e OP(T) P=Pret

—p OP(T)

(11)
is the inverse of the polarizability kernel for the
noninteracting reference system,

PGS (r,r) = <%)N] L (12)
and hence
/ <5i£m2(<rr>’>>]v'5§§<f-f(§/) dr’ = o(r —r"). (13)

In Sect. 3, we will see that Eq. (13), as here stated, is not
valid. For the purposes of this derivation, it suffices
to note that eliminating nonphysical variations in the
Kohn-Sham effective potential allows Eq. (13) to be
recovered. Equation (13) introduces compact notation
for specifying that the functional derivatives are to be
evaluated at p(r) = pe(r). The Kohn—Sham polarizabil-
ity kernel can be evaluated in terms of the Kohn—-Sham
orbitals, {y;(r)}=,, orbital occupation numbers,
{n;}”; — o, and orbital energies, {&}7; o [15]:

o0
Pret(ry, 1) = 2N?
e ; b E,

where W¥; and E; are the wavefunction and energy
eigenvalue for the jth excited state of the reference
system, is less easily computed. In particular, we note
that evaluating Eq. (8) requires not only the ground-
state wavefunction and energy eigenvalue, but energy
eigenvalues and eigenfunctions for all the excited states
as well; hence, Eq. (8) does not represent a practical
method for computing P .¢(ry,r2).

Fortunately, one can express P.(r,r’) in terms of the
orbitals and orbital eigenvalues of an independent-
particle model for the reference system.! In the Kohn—

I There are several alternative methods for computing the polar-
izability kernel [14].

—
o¢]
~

(14)

Equation (14) suggests that we seek a method for
expressing the polarizability kernel of the interacting
system in terms of the Kohn-Sham polarizability
kernel.

To derive a formula linking (;Zifj;((?,))]vto (‘Z’i{)éﬁ?)}v, we

start with the identity:
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By inserting Eq. (13) and its analogue for interacting
systems and applying the definitions of the polarizability
kernels, one obtains

— PSS, r) =

ref
)N [( (trefs(ri))N' 5’3‘;%5;‘ ) } dxdx’

116 Gs).
[ () ) (esiey) oo

Pref T, r

(16)
which simplifies to
Prer(r,v') — PXS(r,) =
U ((x)  Ovit(x)
K-S (p K-s\X) 9 ro /
[ [ (P ey et e

(17)
On substituting Eq. (11) into Eq. (17), we find
Preg(r, 1) — Pf ( ) =

re
o (21 2

[P (G 5w

To further simplify Eq. (18), note

1. %p&")) _ jpE(c({;rEf where E,.(p) is an appropriate

approximation to the exchange—correlation energy
density functional.

2. It follows from from Eq. (10) that 55, X,; = e

)Pref(x’, r')dxdx’.

(18)

On substituting these results into Eq. (18), we obtain [15]

Pref(l‘,l' ) Pref ( ) =
)Pref(x’ ,r)dxdx’.

| e "><|x—1x’|+
(19)

Equation (19) is an integral equation for P.dr,r’) in
terms of quantities accessible from a Kohn—Sham DFT
calculation on the reference system.

Equations (7), (14), and (19) provide the apparatus
for deriving all the quantities necessary to compute
Tn(X) using Eq. (1). Once Yn(X) is known, the stability
and lability are readily computed from their definitions
(Egs. 4, 5, respectively).

52EXC (pref)
op(x')p(x)

2.2 Grand canonical ensemble

Analogous to Yn(X) and Eq. (1) in the canonical
ensemble, in the grand canonical ensemble we have
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YH(X) = AKep(X; Xref)
+ / preg(D)[00(X: 1) — 09 (X 1)]dr

_ %/ /[UO(X;r’) — 00(Xef; )]

X Sref(r7 l'/)[Uo(X; l‘) - DO( ref )}dl‘dl‘

(20)

where s..f(r,r’), the softness kernel for the reference

system, is defined by
5pref(r) — 52Q (21)
du(r)ou(r) /),

Sref(F, 1) = — ( dvo(r')

where
Qu, vo(r)] = E[N, vo(r)] — uN (22)
is the grand potential and [1, 16]
OE[N, vo(r)]
=|l— 2
< ON v0(r) @)

is the chemical potential.

Just as computing Y'n(X) requires an efficient method
for computing the polarizability kernel, computing
Y,(X) requires an efficient method for computing the
softness kernel. However, Kohn—-Sham DFT calcula-
tions are generally performed for a fixed number of
electrons, N, instead of at a constant electronic chemical
potential, u; hence Kohn—Sham DFT does not provide a
direct approach to computing the softness kernel.

Towards solving this problem, we begin by examining
the grand potential at zero temperature. At zero tem-
perature, plots of electronic energy versus particle
number consist of straight line segments, interpolating
the values of the energies for integer numbers of
electrons (Fig. 1a) [17-19]. Corresponding to this result,
the plot of Q[u,v(r)] versus p consists of a sequence
of straight line segments with slopes given by

(=) . -

(Fig. 1b.) N[u,v(r)] is discontinuous when —pu is equal
to one of the system’s successive ionization potentials
or electron affinities (the marked points in Fig. 1b).
Elsewhere, the global softness,

2
SEl:<a—N> = <6Q> // r,r')drdr’ |
m O/

(25)

where 7 is the chemical hardness, is zero.

Examining Fig. 1b in more detail, let us consider the
value of the chemical potential selected by the arrow, .
At such points,

_ (69[uo, v(r)]) N <ag[uo, o(r) + Av(r)]) |
o(r) o)

ou ou
(26)

and hence, at zero temperature, infinitesimal changes in
the external potential at fixed chemical potential do not
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Fig. 1. a E[N,v(r)] versus N (solid line) and E[N,v(r)+ Av(r)] versus
N (dotted line) at zero temperature. Places where the chemical
potential, u = (2—5)1_(, , 1s discontinuous are marked with points. b
Q[N,v(r)] versus p (solid line) and Q[N,v(r) + Av(r)] versus u (dotted
line) at zero temperature. Places where the electron number,

u(r)

change the number of electrons in the system.> Accord-
ingly, the local softness,

().~ 52), o fers

(27)

is discontinuous are marked with points

s(r)=

where f{(r) is the Fukui function, is identically zero
except at the points of discontinuity in N (where the
local softness, like the global softness, is infinite).
Moreover, because infinitesimal changes in the external
potential at fixed chemical potential do not result in
changes in the number of electrons, functional deriv-
atives with respect to the external potential at constant
chemical potential, uo, are equivalent to the same
functional derivatives performed at constant N [ug,v(r)].
Applying this general result, we obtain the formula of
Cohen, et al. [20, 21] for the zero-temperature softness
kernel:

2 Actually, the change in external potential represented in Fig. 1b is
fairly large, representing the effect of changing an atom’s nuclear
charge from Z = 4 (the solid line is constructed from data on
beryllium) to Z = 4.15.

—$pco(r, 1) = @f,)g;)%ﬁ%o: <((S3i((:)))zv,/fﬁx

=Py oo(r,Y) (28)

where the notation indicates that Eq. (28) holds only in
the limit of zero temperature (B =:%). Equation (28)
implies that Y ,(X) (Eq. 20) and Yn(X) (Eq. 1) are equal
at zero temperature.

In as much as the external-potential-based indices
evaluated at constant N and constant u are equal at zero
temperature, in order to differentiate between the two
approaches we must consider 7>0. In order to find a
relationship between the finite-temperature polarizabili-
ty kernel, P?(r,r’) might be computed, for instance,
from a ﬁnlte temperature Kohn—Sham DFT calculation
[13, 22],

> Pi(r,v') exp(—PEx)
Pher) =2 ,
kzoexp(—ﬂEk)
where Py (r,r) is the polarizability kernel for the kth
excited state of the reference system, and the finite

temperature softness kernel, sf(r,r’), we apply the
identity for functional derivatives that is analogous to

©).7 ))&,

thereby attaining

o)., (o), (50),0,, (wi),
(31)

Substituting Egs. (21), (25), and (27) into Eq. (31)
yields the Berkowitz—Parr relation [9],

(29)

(30)

Pr/fzf<r l') = Sref( )fref( ) ref(r7 l‘/> ) (32)
or, equivalently,

P B (v
Pr/if(r r) = 7@( F)Srer(F) —sfef(r,r') . (33)

B
Stef

Note that because the local softness is zero when
T =0, Eq. (32) reduces to Eq. (28) in the limit of zero
temperature. For computational purposes, it is
convenient to rewrite Eq. (33) (using Eqgs. 25, 27) as an
integral equation for the softness kernel:

0= [Pr/if(r r +sfef(r,r’)}//sfef(x,x’)dxdx’

—//srﬁef(r,x)sfef(x’,r’)dxdx’
//{ Prlif (r,r’ +S§ef(r’r/)}sfet‘(xvxl)

- Sll‘;ef(r’ x)sfef(x/) r/) }dxdxl

Equation (34) represents the generalization of
Eq. (28) to nonzero temperature. Along with Eq. (28),

(34)



Eq. (34) provides a method for computing the softness
kernel of the reference system, and hence Y ,(X) (Eq. 20).
Once Y ,(X) is computed, the grand canonical stability,

By = — Y (Xmin) » (35)
and lability,
_ dim(X) (36)
e tr{f,-j} ’

can be obtained. (In Eq. 36, #; is the Hessian matrix
for Y ,(X) at Xpyin-)

2.3 Bronstead—Lowry acids and bases

and the proton hardness

As a specific example of external-potential-based indices,
consider the changes in external potential

1
vo(R; 1) — 09 (Ryef; 1) = —/n+(R,o; r’)mdr’ ,

(37)
1
vo(R; 1) — vo(Ryegs ¥) = —/n,(R,o; r’)mdr’ ,
(38)
where
1 '~ R\’
ni(R,o;r') = £ ——exp [— (r > (39)
n263 g

Substituting Eq. (37) into Eq. (1) defines Y- y(R),
which models the site reactivity of a molecule relative to
a cationic reagent of unit charge and characteristic size
a. Similarly, substituting Eq. (38) into Eq. (1) defines
Y7 MR), which models the site reactivity of a molecule
relative to an anionic reagent of unit charge and char-
acteristic size o. Of particular interest is the limit 6—0;
Y7 =0(R) and Y7 = °\(R), denoted Ypi pase(R) and
Ygr-acia(R), respectively, in Ref. [4], are appropriate re-
activity indices for considering the protonation and de-
protonation of Bronstead—Lowry bases and Bronstead—
Lowry acids, respectively. In particular, Y '~ %(R)
represents the change in molecular energy that results
from placing a proton at the point R. When evaluated at
the position of a proton, Ry, Yf"’:ON(RH) represents
the change in molecular energy that results from
removing that proton from the system. Therefore, the
proton(s) where Y7~ O\(Ry) is smallest is(are) the
most acidic proton(s) in the molecule (in the gas phase).
The value of Y™~ "N(Rp) at the most acidic proton is
labeled —Zpy .aciq; large values of Egy.aciq are associated
with strong Bronstead—Lowry acids. The value of
Y7 =9%(R) at its global minimum models the proton
affinity of the molecule and is labeled —Zg| pase; large
values of Zgj _pase are associated with strong Bronstead—
Lowry bases.

Reference [4] defines the proton hardness as

1

Iy == = .
ZBL-acid T ZBL—base

(40)
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For a given acid (base) strength, a small value of the
proton hardness indicates that the molecule is an un-
usually good Bronstead—Lowry base (acid). A molecule
with a small proton hardness, then, may be expected to
act as a Bronstead—Lowry acid in certain conditions and
as a Bronstead—Lowry base in other conditions.

3 Electron-density-based reactivity indices

The external-potential-based indices from Sect. 2 are
most appropriate for reactions which are well described
as a change in the number, kind, or positions of the
atomic nuclei. For reactions, like those between Lewis
acids and bases, that are best described as a change in
the electronic structure of the reactants, the electron-
density-based indices considered in Ref. [3] are more
appropriate.

In Ref. [3], three key electron-density-based indices
are considered: the chemical potential, y; the chemical
hardness, n =1, and the Fukui function, f(r) =<
These quantities were introduced in Sect. 2.2 in the
context of the grand canonical ensemble for 7> 0. For
integer numbers of particles at 7= 0, however, deriva-
tives of the energy with respect to particle number do not
exist, and each electron-density-based descriptor is re-
placed by two descriptors, one in which the derivative is
taken from above and one in which the derivative is
taken from below (Fig. 1a).> For instance, correspond-
ing to Eq. (23), one now has two chemical potentials,
one where the derivative is taken from above,

and one where the derivative is taken from below,

where [ and A4 denote the ionization potential and
electron affinity, respectively. Likewise, there are now
two Fukui functions,

Con (N (out
f (l') = < aN )vo(r) <5vo(r))N pNJrl(r) 7101\7(1.)
(43)

(42)

and

0= (%7) = (o) =0 ot
(@4

where pn(r) denotes the electron density for the N-
electron system with external potential vy(r). At zero
temperature, the hardness,

_ (FE[N, vo(r)]
= oN? vo(r) 7

(45)

3 A more detailed derivation of these results is found in the
appendix of Ref. [3].
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is zero when the derivatives are taken from above or
below and is infinite when a central difference formula is
used. For this reason, it is most useful to define # with
the finite-difference approximation to Eq. (45) (with
AN = 1):

n=p - =1-4. (46)

The chemical potentials and the chemical hardness are
related to the ionization potential and the electron
affinity and are known for many atoms and molecules
[23]. By contrast, finding accurate methods for comput-
ing the Fukui function is an area of active research [20,
21, 24-31] (Ref [7] reviews recent progress). We now
present a method for computing the Fukui functions
from the output of a Kohn-Sham DFT calculation [13].

Recall that the hardness kernel is defined through [9]

e = 9F ()

) = S )op
__0T(p) J (p) OExe(p)
op(r')op(r) ~ op(r)op(r) = op(r)op(r)

(47)
where F(p) is the Hohenberg—Kohn functional, Ty(p) is
the noninteracting kinetic energy,

J(p) E;//Mdrdr’ (48)

is the electrostatic repulsion energy, and E,.(p) is the
exchange—correlation energy density functional. Many
electron-density-based indices, including the Fukui
function, can be derived from the hardness kernel [9].

To obtain an equation for the Fukui function in
terms of the hardness kernel, we use the fact that the
hardness kernel is the inverse of the softness kernel to
obtain

1= /5(r —r")dr”

://n(r7r’)s(r’7r”)dr’dr”
:/n(r,r’)/s(r’,r”)dr"dr’

— / n(e ) - SF00)dY (49)

where the last step follows from Eq. (27). By applying
the definition of the softness (Eq. 25) it follows that

n= / S0 )dr (50)

Equation (50) is a known result and can also be derived
from the chain rule for functional derivatives [27, 32]
and the variational principle for the Fukui function
[3, 27].

For integer numbers of electrons at zero temperature,
Eq. (50) becomes two integral equations, one for the
Fukui function from above,

0t = / £ (e (51)

and one for the Fukui function from below,

§ = / S (e r)dr (52)

While n* = 5~ = 0 for exact DFT, this is not gener-
ally true for hardness kernels computed with approxi-
mate exchange—correlation functionals. If we can
compute the one-sided hardness kernels from the results
of a Kohn—Sham calculation, then we may compute the
Fukui functions by solving integral Eqgs. (51) and (52).

We approach the one-sided hardness kernels through
Eq. (47). In particular, note that we can compute
52Exc(P) /op(r')op(r) for any approximate exchange—
correlation energy density functional, while

FJp) 1
5p(0)op()  r—r| -

What is required, then, is a method for computing the
one-sided functional derivatives of th+e Kohn—Sham
kinetic energy, (8°Ti(p)/dp(r')dp(r))" and (8°Ty(p)/
0p(r')op(r))”. These functional derivatives can be
expressed in terms of Kohn—Sham DFT quantities, as is

now shown.
We start by recalling that

3Ty(p)*™
dp(r)

(53)

= ELUMO/HOMO — UK-s(p;T) . (54)

(This result for noninteracting systems is analogous to
the equation

() ==

which holds for interacting systems.)
By taking the functional derivative of Eq. (54) with
respect to the density, we obtain

( OTy(p) )+/_: d[eLumosmomo ()] vk s(p;r)
(1) |

Sp(r')op op(r') p(r')
(55)
T 6[5LUM0/H()M0<.D>} at]
0 compute ———5"r——, use the relation
eLuMo/HOMO (P) =
1
<‘//LUMO/HOM0 (r)|— §V2 + vk-s(0; 1) |¥'Lumo /HOMO (1')> )
(56)
to obtain
d[eLumo momo ()]
op(r')
B l_, ] 5‘//LUMO/HOMO(r)
—<l//LUM0/H0Mo(T) —QV +ok-s(p;r) T(r')>
YLumosmomo(r)| 1
+ <W‘—§V2+0KS(P;T) l//LUI\/IO/HOI\/[O(I')>
5(—%v2+v](,s(p;l‘)) >
-+ r - r) .
<WLUM0/H0M0( ) Sp(r) YLumosHomo ()
(57)

Substitution of the Kohn—Sham equations,
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(— 3 V2 + vk-s(p; 1')) WLUMO/HOMO(T)

= éLumMo/HOMO * ¥Lumo Homo (T) (58)
into Eq. (57) yields

0 [SLUMO/HOMO (P)]
op(r')

= 26LUMO/HOMO

5
op(r')

X <'//LUM0/H0M0 (r) ’WLUMO/HOMO (r)>

5 _ .
+ <‘PLUM0/H0M0(1') %ﬁgr) ¢LUMO/H0M0(T)>
o(1)

dp(r)

5 _ .
+ <‘PLUM0/H0M0(1') %Eg,r) ‘PLUMO/HOMO(T)>

2 Sve < (D
:/"waUMO/HOMO(r)’ %&o),r)

Identifying ¢y ymo With — 4 and egomo With —1 reveals
that Eq. (59) represents an approximate formula for the
local hardness, #(r).* Combining Egs. (55) and (59)
yields an expression for the second functional derivative
of the Kohn—Sham kinetic energy:

~ duk—s(p;r)

3T(p) \'° B 250k _s(pi 1)
(W) = / "PLUMO/HOMO(T) — 5 —dr
op(r')

op(r')
Then, combining this last result with Egs. (47) and (53)
gives an expression for the one-sided hardness kernels:

= 2ELUMO/HOMO °

dr . (59)

(60)

n () = / ‘lPLUMO/HOMO(r) 2501(%(5'?);1‘)
 ouk-s(psr) 1 §Exe(p)
soc) =] apopm OV

Because the zero of energy is arbitrary, vg_s(r) is only
defined up to an arbitrary constant; therefore,
ovg_s(p;r)/op(r’) is only defined up to a constant.
However, because the Kohn-Sham orbitals are
normalized to unity, the ex ressions for (8Ty(p)
/8p(X)op(r))™~ (Eq. 60) and "/~ (Eq. 61) are invariant
with respect to arbitrary constants in dvk_s(p;r)/dp(r’).

When combined with a method for computing, and
the integral equations for the Fukui functions (Egs. 51,
52), Eq. (61) allows us to compute the Fukui functions
from the output of a Kohn—Sham calculation. Alterna-
tively, Eq. (61) could be used in the variational principle
for the Fukui function [3, 27].

4In order to make this identification, it is necessary that one
constrain vig_s(p;r) to approach zero (rather than some other
constant) asymptotically. This amounts to fixing the zero of energy.
Reference [9] establishes that the local hardness is not uniquely
defined in DFT. The present definition is useful in the context of
Ref. [3].
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Now we discuss methods for computing dvg_s(p;r)
/dp(r').” Consider that

[ i) or= [ () =0 @

a result that follows directly from Eq. (14). Physically,
Eq. (62) reflects the fact that shifting the Kohn—Sham
potential by a constant only shifts the zero of energy and
does not change the density. Equation (62) reveals that
(0p(r')/ovk_s(r)), possesses a zero eigenvalue and hence
has no inverse; however, dvg_s(p;r)/dp(r') may be
regarded as a generalized inverse of (dp(r')/ovk_s(r))y
since

ovg-s(p;r) [ dp(r') R
i e LG RC

In order to find a generalized inverse of (dp(r')
/ovk_s(r"))y, we must remove the “infinite wavelength”
variations, which correspond to shifting vk _g(r) by a
constant.® One may accomplish this by performing
a singular value decomposition. One starts by expanding
(6p(r') Jovk_s(r")), in a basis set, thereby obtaining a
matrix, P 'Sl ;- On diagonalizing the matrix, one obtains
an expression for (dp(r ")/ovk_s(r")), in terms of its
eigenvalues, 4;, and eigenvectors, .%;(r),

(5UK N r,,> ng (r"). (64)

The generalized inverse is then

duks(pir) _ (1 ()2 (x"
T@-’)_Z (}ﬁ)"gl( )Zi(x") (65)

where the prime on the summation symbol indicates that
the sum excludes i for which 4; = 0.7 The analogue of
this procedure for periodic systems has been explored by
many authors [33-35].

Because the expression for Jvk_gs(p;r)/dp(r') is
derived from information about the constant N system,
a more accurate notation for the result of Eq. (65) is
(ovk—s(p;r)/op(r'))y. As shown by Parr and Bartolotti
[36], functional derivatives at constant N differ from
unrestricted functional derivatives by an arbitrary
additive  constant. For  (dvk_s(p;r)/op(r')), and
ovk-s(p;r) /op(r'), this poses no problem, as it merely
reflects the invariance of Kohn—-Sham calculations

SThe Hohenberg-Kohn theorem, as applied to a system of
noninteracting electrons, ensures that dvg _s(r)/dp(r') exists when-
ever both p(r) and p(r)+ Jp(r) are noninteracting-v-representable.

6 Especially for periodic systems, it is often easier to subtract out
the effects of zero-wavenumber variations in vig_g(k). Consegently,
one takes the Fourier transform of (dp(r")/dvk_s(r)), and removes
the zero-wavenumber “modes”, thereby obtaining a polarizability
kernel, (5p(k’)/5vK_s(k))?v that does not include the effects of
constant shifts in vg_g(r) [33-35]. Inverting this matrix and
performing the inverse Fourier transform yields a generalized
inverse, dvk_s(p;r)/p(r').

7In practice, one omits all /; whose absolute value is sufficiently
close to zero.
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to constant shifts of vg_g(p; r). From this perspective,
the computational procedure of Eq. (65) represents a
method for fixing the value of this constant. This causes
no problems: returning to the discussion following
Eq. (61), it is clear that the particular value assumed by
this constant does not alter the results of Egs. (60) or
(61).

4 Conclusion

This article shows how key electron-density-based and
external-potential-based reactivity indices may be com-
puted from the output of a Kohn—Sham DFT calcula-
tion. This does not suggest that these indices are
necessarily easily computed in this fashion, or that the
methods proposed here are optimal. For the Fukui
function in particular, methods which combine satisfac-
tory accuracy with suitable computational ease are
available [7, 25]. In general, however, the methods
proposed here should be no more costly than obtaining
the original solution to the Kohn—Sham equations.
Many of the results contained within the treatment
have been previously derived in other contexts; as such,
the primary contribution of this article consists of
combining these results to form a plausible scheme for
computing the reactivity indices of interest to chemistry.
For instance, the time- and frequency-dependent ana-
logues to Eq. (19) are important tools in the time-de-
pendent DFT approach to excitation energies [15]. While
Egs. (28) and (32) have been previously presented in the
context of DFT reactivity theory [9, 20, 21], the present
derivations are more straightforward. Similarly, though
Eq. (50) is a known result [3, 27, 28, 32], the present
derivation is new. Finally, the expressions for the second
functional derivative of T(p) (Eq. 60) and the hardness
kernel (Eq. 61) in terms of Kohn—Sham DFT quantities
are, to the best of the author’s knowledge, original to the
present work. As developed in Ref. [9] and emphasized
in Refs. [20, 21], the hardness kernel is the fundamental
DFT reactivity index; hence, Eq. (61) has many poten-
tial applications. Likewise, there has recently been
renewed interest in the kinetic energy kernel,
0Ts(p)/op(r)p(r) [37-39]. It is expected that the exact
Eq. (60) will be helpful for both formal studies and also
applications. In particular, Eq. (60) may prove useful for
the DFT-based embedding method of Govind et al. [3§],
where both (57"5(p)/5,0(r))+/7 (Eq. 54) and the way
(8Ty(p)/dp(r)) "/~ changes as electron density is trans-
ferred between the “bulk’ and “‘cluster” subsystems,

(55:)3((5)))“_ / (%Z’é%) +/75/)(r’>dr’ . (66)

are of interest.

We conclude with a few words concerning the suc-
cessful application of the reactivity indices considered
in this article. The derivations in Refs. [3, 4] emphasize
that the reactivity indices of DFT represent ‘“‘response
functions” to perturbations in the electron number
(electron-density-based indices) or the external potential
(external-potential-based indices). As such, they will be
most reliable when the perturbation is small, so that

higher-order effects are negligible. Consequently, the
reactivity indices of DFT are most appropriate for
describing geometries in which the reactants are well
separated, so that the perturbations under consideration
are relatively weak. This suggests that one consider the
values the local reactivity indices, Yn;,(X) and f(r), as-
sume on the molecular van der Waals surface. For re-
actions where the transition state is reached while the
reactants are still well separated (that is, the transition
state is positioned early along the reaction coordinate),
large values of f(r) (small values of Yy,,(X)) should
indicate enhanced site reactivity. In practice, plots of
reactivity indices on molecular van der Waals surfaces
may correctly predict the products of reactions even
when the transition state is not especially early; for such
reactions, however, higher-order response functions may
significantly influence reactivity patterns and, hence, the
types of reactivity indices considered here may prove
unreliable.

Concerning the definition of the “van der Waals
surface” of a molecule, the isodensity surfaces, p(r) = k
(generally 0.001 < k£ <0.002), have been successfully
employed for studies of chemical reactivity using the
Fukui function and molecular electrostatic potential
[40]. Perhaps more appropriate to Kohn—-Sham DFT,
however, is the surface

vk-s(r) = enomo (67)

where egomo 1S the orbital energy of the highest
occupied molecular orbital, which corresponds to the
classical turning point for the noninteracting electrons in
the Kohn—Sham reference system. This surface strongly
resembles van der Waals surfaces generated by other
criteria [41] and is expected to strongly resemble the
accurate classical turning point surface [42].
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